SOME RESTRICTIONS ON FINITE GROUPS ACTING FREELY ON $(S^n)^k$

BY

GUNNAR CARLSSON¹

ABSTRACT. Restrictions other than rank conditions on elementary abelian subgroups are found for finite groups acting freely on $(S^n)^k$, with trivial action on homology. It is shown that elements x of order p, p an odd prime, with x in the normalizer of an elementary abelian 2-subgroup E of G, must act trivially on E unless p|(n+1). It is also shown that if p=3 or 7, x must act trivially, independent of n. This produces a large family of groups which do not act freely on $(S^n)^k$ for any values of n and k. For certain primes p, using the mod two Steenrod algebra, one may show that x acts trivially unless $2^{\mu(p)}|(n+1)$, where $\mu(p)$ is an integer depending on p.

Introduction. In this paper, we will describe some restrictions of the structure of finite groups G which act freely on spaces having the homotopy type $\prod_{j=1}^k S^n$. For the case of k=1, it is well known that all abelian subgroups of G are cyclic, and this condition is sufficient to allow the construction of a finite CW-complex on which G acts freely. In [2], it was proven that for k arbitrary, the elementary abelian 2-subgroups of G must have rank $\leq k$. However, for $k \geq 1$, more subtle restrictions than rank conditions are necessary. The following is known.

THEOREM [5]. A_4 does not act freely on $S^n \times S^n$, with trivial action on mod 2 homology.²

In this paper we apply the results of [2] to generalize this result considerably; thus, the main theorem, Theorem 4.4.

THEOREM. Let G be a semidirect product $\mathbb{Z}/3 \times_T (\mathbb{Z}/2 \times \mathbb{Z}/2)$ or $\mathbb{Z}/7 \times_T (\mathbb{Z}/2 \times \mathbb{Z}/2)$, with nontrivial action. Then G does not act freely on a finite CW-complex $X, X \simeq \prod_{j=1}^k S^n$, with trivial action on mod 2 homology, for any values of k and n.

For fixed values of n, we obtain stronger restrictions on G, in Theorem 3.5.

THEOREM. Let G act freely on X, $X \simeq \prod_{j=1}^k S^n$, where X is finite, and acts trivially on $H_*(X; \mathbb{Z}/2)$. Let $x \in N_G(E)$ be an odd order element of order p, p prime, where N_G denotes normalizer and E is an elementary abelian subgroup of G. Then, unless p|(n+1), x is in the centralizer of E. Moreover, there is a function $\mu: \mathbb{Z} \to \mathbb{Z}$, such that x is in the centralizer unless $2^{\mu(d)}|(n+1)$. (μ is nontrival, i.e. $\mu(31) = 3$.)

Received by the editors September 24, 1979 and, in revised form, March 19, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 55G10, 57E25.

¹Supported in part by NSF Grant MCS-7903192.

²R. Oliver informs me that he can also prove this theorem for $(S^n)^k$.

EXAMPLE. Suppose $x \in N_G(E)$ has order 127, and acts nontrivially on E. Then $16 \cdot 127 | (n+1)$.

These conditions superficially resemble the Milnor condition (see [4]), for k = 1. However, the Milnor condition is a restriction on groups acting freely on a *manifold* M, $M \simeq S^n$. Our conditions depend only on the 2-local homotopy type of the space X. Secondly, the Milnor condition depends on k; the group D_6 will act freely on $S^n \times S^n$, but not on S^n . Our conditions are independent of k.

1. Preliminaries. Let Γ be a finite group of odd order, and let $\rho: \Gamma \to \operatorname{GL}_n(\mathbb{Z}/2)$ be an *n*-dimensional linear representation of Γ over the field $k = \mathbb{Z}/2$. We define $\Sigma(\Gamma, \rho)$ by

$$\sum (\Gamma, \rho) = \Gamma \times_{\rho} (\mathbb{Z}/2)^{n},$$

the semidirect product of Γ with $(\mathbb{Z}/2)^n$. Recall that the $\mathbb{Z}/2$ -cohomology of $(\mathbb{Z}/2)^n$ is given by

$$H^*((\mathbf{Z}/2)^n; \mathbf{Z}/2) \simeq (\mathbf{Z}/2)[x_1, \dots, x_n] \stackrel{\text{(defn.)}}{=} A_*,$$

the polynomial ring on n 1-dimensional generators x_1, \ldots, x_n . Note that if Γ is a group of automorphisms of $(\mathbb{Z}/2)^n$, then Γ acts on A_* ; in fact, if M is the matrix describing the action of $\gamma \in \Gamma$ on $(\mathbb{Z}/2)^n$, then γ acts on $H^1((\mathbb{Z}/2)^n; \mathbb{Z}/2) = k \cdot x_1 + \cdots + k \cdot x_n$ by the matrix M', and the action extends to the rest of A_* by multiplicativity.

PROPOSITION 1. Let Γ be an odd order group, $\rho: \Gamma \to \operatorname{GL}_n(k)$ a representation as above. Then $H^*(\Sigma(\Gamma, \rho); k) \cong A_*^{\Gamma}$, the ring of invariants under the action of Γ on A_* .

PROOF. Consider the Hochschild-Serre spectral sequence for the group extension

$$(\mathbf{Z}/2)^n \to \sum (\Gamma, \rho) \to \Gamma.$$

 $E_2^{p,q} = 0$ for $p \neq 0$ and $E_2^{0,q} = A_a^{\Gamma}$; hence the result. \square

Recall that since $H^*(G; k)$ is the cohomology ring of the space BG for any group G, it is an algebra over the mod 2 Steenrod algebra $\mathcal{C}(2)$. In particular, A_* is such an algebra, and the action of $\mathcal{C}(2)$ on A_* is determined by the Cartan formula and the requirements $\operatorname{Sq}^1 x_j = x_j^2$, $\operatorname{Sq}^i x_j = 0$ for i > 1.

We recall the inductive definition of the Milnor primitives Q_i by

$$Q_1 = Sq^1, Q_{i+1} = [Q_i, Sq^{2^i}].$$

Conventionally, as in [1], we define a derivation Q_0 on A_* by $Q_0x_i=x_i$, and the requirement that Q_0 be a derivation. We remark that under left multiplication of elements of A_* , the derivations of A_* to itself become a graded A_* -module.

PROPOSITION 2 (SEE [1]). (a) Q_i is a derivation of A_* .

(b) There exist polynomials $\varphi_{ij} \in A_*$, $j = 0, \ldots, n-1, l > n$, such that $Q_l = \sum_{j=1}^{n-1} \varphi_{lj} Q_j$.

(c)
$$Q_0(z) = 0$$
 for $z \in A_{2k}$, $Q_0(z) = z$ for $z \in A_{2k+1}$.

Proposition 3 [1]. Let $\theta \in A_*$ satisfy $Q_i\theta = 0 \ \forall i$. Then θ is a square.

COROLLARY 4. If $\theta \in A_*$ satisfies $Q_j\theta = 0$ for j = 0, ..., n-1, then θ is a square.

Finally, we recall some results from [2]. Let G denote a finite group acting freely on a finite CW-complex X, where $X \simeq \prod_{j=1}^k S^n$ so that the action of G on $H^*(X;k)$ is trivial. Let $y_j \in H^n(X)$ denote the dual to the fundamental class of the jth sphere. Consider the Serre spectral sequence for the fibration

$$X \to EG \underset{G}{\times} X \to BG$$

where EG denotes a contractible space on which G acts freely. Define $f_j \in H^{n+1}(BG;k) = H^{n+1}(G;k)$ to be $d_{n+1}(y_j)$ in the above spectral sequence.

PROPOSITION 5 [2]. The ideal in $H^*(G;k)$ generated by the f_i 's is $\mathfrak{A}(2)$ -invariant.

Let C_* denote a graded k-algebra, and let $\{\theta_1, \ldots, \theta_k\} \in C_*$ be a collection of homogeneous elements in C_* .

DEFINITION 6. We say $\{\theta_1, \ldots, \theta_k\}$ is a homogeneous system of parameters (h.s.o.p.) for C_* if C_* is a finitely generated module over the subalgebra generated by the θ_i^* s.

REMARK. This terminology is nonstandard in that the usual definition would require the set $\{\theta_1, \ldots, \theta_k\}$ to be algebraically independent.

THEOREM 7 [2]. If $G = (\mathbb{Z}/2)^n$, and X and the f_j 's are as above, then the f_j 's form an h.s.o.p. for $A_* = H^*((\mathbb{Z}/2)^n; k)$.

COROLLARY 8. If $G = \Sigma(\Gamma, \rho)$, and X and the f_j 's are as above, then the f_j 's form an h.s.o.p. for $A_*^{\Gamma} = H^*(\Sigma(\Gamma, \rho); k)$.

PROOF. A_* is finitely generated as an A_*^{Γ} -module. \square

2. Invariant theory for odd order cyclic groups. We wish to study groups of the type $\Sigma(\mathbb{Z}/n\mathbb{Z};\rho)$, where ρ is a faithful, irreducible representation of $\mathbb{Z}/n\mathbb{Z}$ over k,n odd. The following four propositions are standard results in the representation theory of finite groups. We omit the proofs and refer the reader to [8]. We describe the faithful, irreducible representations of $\mathbb{Z}/n\mathbb{Z}$ over k. Let $k(\zeta_n)$ denote the field obtained from k by adjoining the nth roots of unity, and let $d_n = [k(\zeta_n): k]$. Let $T_n \subseteq k(\zeta_n)$ consist of the nth roots, and let $G = G(k(\zeta_n)|k) \simeq \mathbb{Z}/d_n\mathbb{Z}$ denote the Galois group of $k(\zeta_n)$ over k. Note that G acts on T_n , and consequently on $\text{Hom}(\mathbb{Z}/n\mathbb{Z}; T_n)$.

PROPOSITION 1. Any injection $\varphi \in \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, T_n)$ defines an irreducible, faithful representation of $\mathbb{Z}/n\mathbb{Z}$, with $k(\zeta_n) \cong k^{d_n}$ as representation space. Conversely, any irreducible, faithful representation of $\mathbb{Z}/n\mathbb{Z}$ is obtained in this way, and two injections $\varphi, \psi \in \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, T_n)$ define isomorphic representations iff $\psi = \varphi^g$, for some $g \in G$.

It is also useful to consider the faithful, irreducible \bar{k} -representations of $\mathbb{Z}/n\mathbb{Z}$, where \bar{k} denotes the algebraic closure of k.

PROPOSITION 2. All irreducible representations of $\mathbb{Z}/n\mathbb{Z}$ over \overline{k} are one-dimensional. Each $\varphi \in \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, T_n)$ defines an irreducible representation of dimension 1, and all these representations are distinct. $G(\overline{k}|k)$ acts on the irreducible representations.

Given a k-representation (V, ρ) , one may form a \overline{k} -representation $(V \otimes_k \overline{k}, \rho \otimes \operatorname{id})$, which we write $(\overline{V}, \overline{\rho})$. We describe $(\overline{V}, \overline{\rho})$, where $V = k(\zeta_n)$, and ρ is an injection ρ : $\mathbb{Z}/n\mathbb{Z} \to T_n$. Recall that the Frobenius map $\gamma(x) = x^2$ topologically generates $G(\overline{k}|k)$, and hence γ generates $G(\overline{k}|k)$, where K is any finite extension of k. Moreover, for $x \in T_n$, $\gamma^{d_n}(x) = x$, since $d_n = [k(\zeta_n): k]$. Let $i: k(\zeta_n) \to \overline{k}$ be any embedding.

PROPOSITION 3. $i \circ \rho$ defines an irreducible \bar{k} representation of $\mathbb{Z}/n\mathbb{Z}$, say σ . Then $(\bar{V}, \bar{\rho}) \simeq \coprod_{j=0}^{d_n-1} (\bar{k}, \sigma^{\gamma})$. This is independent of i, since any two choices of i are conjugate under $G(\bar{k}|k)$.

Thus, an irreducible k-representation amounts to a choice of primitive nth roots of unity ζ ; the representation $(\overline{V}, \overline{\rho})$ is then defined by

$$\overline{V} = \overline{k}^{d_n}, \, \overline{\rho}(T)(x_1, \ldots, x_d) = (\zeta x_1, \zeta^2 x_2, \ldots, \zeta^{2^{(d_n-1)}} x_d).$$

If we let (V, ρ) be a finite-dimensional k-representation of a group G we may form the symmetric algebra k[V], and extend the action of G to k[V]. $k[V]^G$ will denote the ring of invariants. If $G = \mathbb{Z}/n\mathbb{Z}$, and ρ is a faithful, irreducible representation on V,

$$H^*(\sum (\mathbf{Z}/n\mathbf{Z}; \rho); k) \cong k[V]^{\mathbf{Z}/n\mathbf{Z}}.$$

The structure of $k[V]^{\mathbf{Z}/n\mathbf{Z}}$ may be complicated; for our purpose, however, it will suffice to know in what dimensions elements exist. For this purpose, we may tensor up to \overline{k} , for

Proposition 4. $k[V]^G \otimes_k \bar{k} \cong k[V]^G$.

Let (W, σ) denote any representation of $\mathbb{Z}/n\mathbb{Z}$ over \overline{k} . Thus $W \cong \bigoplus_{j=1}^{s} \overline{k}$, and the representation is determined on a generator T of $\mathbb{Z}/n\mathbb{Z}$ by

$$\rho(T) = \Delta(\zeta_1, \ldots, \zeta_s),$$

where $\Delta(\zeta_1, \ldots, \zeta_s)$ denotes the diagonal matrix with entries ζ_1, \ldots, ζ_s , *n*th roots of unity. Choosing a particular primitive *n*th root ζ , we define integers modulo $n \lambda_i$ by $\zeta_i = \zeta^{\lambda_i}$.

PROPOSITION 5. $\bar{k}[V]^{\mathbf{Z}/n\mathbf{Z}} \subseteq k[V]$ may be identified with the subalgebra of $k[x_1, \ldots, x_s]$ consisting of all monomials $x_1^{e_1} \cdots x_s^{e_s}$ such that

$$\sum_{j=1}^{s} e_{j} \lambda_{j} = 0 \pmod{n}.$$

PROOF. Let x_j represent a basis vector for the jth summand of (V, ρ) , so $Tx_j = \zeta_j x_j = \zeta^{\lambda_j} x_j$.

It is evident that the action of T respects the monomial basis of $\overline{k}[V]$. Given a monomial $x_1^{e_1} \cdots x_s^{e_s}$,

$$T(x_1^{e_1}\cdots x_s^{e_s})=\left(\prod_{j=1}^s\zeta_j^{e_j}\right)x_1^{e_1}\cdots x_s^{e_s}=\zeta^{\sum \lambda_j e_j}x_1^{e_1}\cdots x_s^{e_s},$$

so
$$x_1^{e_1} \cdots x_s^{e_s} \in \bar{k}[V]^{\mathbb{Z}/n\mathbb{Z}} \Leftrightarrow \sum_{i=1}^{d_n} \lambda_i e_i \equiv 0 \pmod{n}$$
. \square

COROLLARY 6. Let (V, ρ) be any faithful, irreducible $\mathbb{Z}/n\mathbb{Z}$ -representation over k. Then $k[\overline{V}]^{\mathbb{Z}/n\mathbb{Z}}$ may be identified with the subalgebra of $k[x_1, \ldots, x_{d_n}]$ consisting of all monomials $x_1^{e_1} \cdots x_{d_n}^{e_d}$ so that $\sum_{i=1}^{d_n} 2^{i}e_i = 0 \pmod{n}$.

DEFINITION 7. Define the dyadic expansion number of n, $\nu(n)$, by $\nu(n) = \min_{S} \{\sum_{i=1}^{d_n} \alpha_i\}$ where $S = \{(\alpha_1, \ldots, \alpha_d) | \sum_{i=1}^{d_n} \alpha_i 2^i \equiv 0 \pmod{n} \}$.

COROLLARY 8. Let (V, ρ) be as above. Then the first dimension for which $k[V]^{\mathbf{Z}/n\mathbf{Z}}$ is nontrivial is $\nu(n)$.

As remarked before, $k[V]^{\mathbf{Z}/n\mathbf{Z}}$ is endowed with an $\mathfrak{L}(2)$ -action. Extending the action k-linearly, we obtain an action of $\mathfrak{L}(2)$ on $k[V]^{\mathbf{Z}/n\mathbf{Z}}$, which satisfies the Cartan formula and the axiom $\operatorname{Sq}^i(x) = 0$ if $\dim x < i$, but no longer satisfies the condition $\operatorname{Sq}^n(x) = x^2$ for $\dim x = n$. We wish to describe the $\mathfrak{L}(2)$ -action on $k[V]^{\mathbf{Z}/n\mathbf{Z}}$, when this is given in a basis which splits V as a direct sum of 1-dimensional representations, as in Corollary 6.

LEMMA 9. In terms of a basis which splits \overline{V} into a sum of one-dimensional representations, say x_1, \ldots, x_{d_n} , the action of $\mathfrak{C}(2)$ on $\overline{k}[\overline{V}]$ is characterized by the Cartan formula, \overline{k} -linearity, and the condition $\operatorname{Sq}^1 x_j = x_{j-1}^2$. (Here x_0 is identified with x_{d_n} .)

PROOF. Writing $(\overline{V}, \overline{\rho}) \cong \bigoplus_{j=1}^{d_i} (\overline{V_j}, \overline{\rho_j})$, where $\overline{V_i} \cong \overline{k}$, and $\rho_i(T)(x) = \zeta^{2^{i-1}}x$, V may be identified with the invariants $[\bigoplus_{j=1}^{d_i} \overline{V_j}]^{G(\overline{k}|k)}$ where $G(\overline{k}|k)$ acts on $\bigoplus_{j=1}^{d_i} V_j$ by

$$(x_1,\ldots,x_d)^{\gamma}=(x_d^{\gamma},x_1^{\gamma},\ldots,x_{d-1}^{\gamma}).$$

Now, $\operatorname{Sq}^1 x = x^2$ for $x \in V = A_1$, so it suffices to check that the formula of the theorem satisfies this condition on V. But every element in $[\bigoplus_{j=1}^{d_i} \overline{V_j}]^{G(\bar{k}|k)}$ is of the form

$$(\alpha, \alpha^{\gamma}, \alpha^{\gamma^2}, \ldots, \alpha^{\gamma^{d_{n-1}}}), \text{ for } \alpha \in k(\zeta_n).$$

If $(\alpha_1, \ldots, \alpha_{d_n}) = (\alpha_{d_n}^{\gamma}, \alpha_1^{\gamma}, \ldots, \alpha_{d_n-1}^{\gamma})$, we obtain $\alpha_1 = \alpha_{d_n}^{\gamma} = \alpha_{d_n-1}^{\gamma^2} = \cdots = \alpha_1^{\gamma^{d_n}}$. Thus, α_0 belongs to the fixed field of γ^{d_n} , which is $k(\zeta_n)$. Applying the formula of the theorem to elements of this type, we obtain

$$\operatorname{Sq}^{1}\left(\sum_{j=1}^{d_{n}} \alpha^{\gamma^{j}} x_{j+1}\right) = \sum_{j=1}^{d_{n}} \alpha^{\gamma^{j}} x_{j}^{2} = \sum_{j=1}^{d_{n}} \alpha^{\gamma^{j+1}} x_{j+1}^{2} = \left(\sum_{j=1}^{d_{n}} \alpha^{\gamma^{j}} x_{j+1}\right)^{2},$$

where we interpret x_{d+1} as x_1 . \square

3. Systems of parameters in $k[V]^{\mathbb{Z}/n\mathbb{Z}}$. Recall from §1 the definition of an h.s.o.p. $\{\theta_1, \ldots, \theta_k\}$ of a graded k-algebra. We say $\{\theta_1, \ldots, \theta_k\}$ is $\mathfrak{C}(2)$ -invariant if the

ideal $(\theta_1, \ldots, \theta_k)$ is preserved by the $\mathcal{C}(2)$ -action, provided the given graded k-algebra is an $\mathcal{C}(2)$ -algebra.

LEMMA 1. Let $\{\theta_1, \ldots, \theta_k\}$ be an h.s.o.p. for a graded algebra C_* , and j: $C_* \to C'_*$ a surjective map of graded rings. Then $\{j\theta_1, \ldots, j\theta_k\}$ is an h.s.o.p. for C'_* . Similarly, if C_* and C'_* are $\mathfrak{C}(2)$ -algebras, and j commutes with the $\mathfrak{C}(2)$ -action, then $\{j\theta_1, \ldots, j\theta_k\}$ is an $\mathfrak{C}(2)$ -invariant h.s.o.p.

Proof. Immediate.

PROPOSITION 2. Suppose $\{\theta_1, \ldots, \theta_k\}$ is an h.s.o.p. for $k[V]^{\mathbb{Z}/n\mathbb{Z}}$, and suppose $\dim(\theta_i) = d$ for all $j = 1, \ldots, k$. Then n|d.

PROOF. It is clear that $\{\theta_1, \ldots, \theta_k\}$ also forms an h.s.o.p. for $\overline{k}[\overline{V}]^{\mathbf{Z}/n\mathbf{Z}}$. Perform a basis change so that $\overline{k}[\overline{V}]$ is identified with the subalgebra of $\overline{k}[x_1, \ldots, x_{d_n}]$ defined in Corollary 2.6. Consider the ideal $I \subseteq \overline{k}[\overline{V}]$ generated by all monomials $x_i x_j$; $i \neq j$. Then $\overline{k}[\overline{V}]/I$ has the elements x_i^s as basis in dimension s. The image of $\overline{k}[\overline{V}]^{\mathbf{Z}/n\mathbf{Z}}$ consists of the subalgebra generated by $x_1^n, \ldots, x_{d_n}^n$. In particular, $k[V]^{\mathbf{Z}/n\mathbf{Z}}/I_{1\cap k[V]^{\mathbf{Z}/n\mathbf{Z}}}$ is zero in all dimensions except multiples of n, and hence admits h.s.o.p. $\{\eta_1, \ldots, \eta_k\}$ with $\dim(\eta_1) = \cdots = \dim(\eta_k) = d$ only for n|d. \square Consider $A_* = \overline{k}[x_1, \ldots, x_{d_n}]$, with $\mathbf{Z}/n\mathbf{Z}$ acting by $Tx_i = \zeta^{2^{i-1}}x_i$, ζ a primitive nth root of unity, and $\mathfrak{C}(2)$ acting as in Lemma 2.9.

LEMMA 3. The ideal J generated by the elements $\{x_i + x_j\}_{1 \le i,j \le d_n}$ is $\mathfrak{C}(2)$ -invariant. Hence A_*/J is an algebra over $\mathfrak{C}(2)$. Moreover, $A_*/J \cong k[x]$, with $\operatorname{Sq}^1 x = x^2$.

Proof. Clear.

PROPOSITION 4. Let $\{\theta_1, \ldots, \theta_k\}$ be an $\mathcal{Q}(2)$ -invariant h.s.o.p. for $A_*^{\mathbf{Z}/n\mathbf{Z}}$, with $\dim(\theta_1) = \cdots = \dim(\theta_k) = S$. Then $2^{t+1}|S$, where t is the largest integer satisfying $2^t < \nu(n)$.

PROOF. According to Corollary 2.8, $A_*^{\mathbf{Z}/n\mathbf{Z}} = 0$ for $* < \nu(n)$. Consequently, $B_* = 0$ also for $* < \nu(n)$, where $B_* = A_*^{\mathbf{Z}/n\mathbf{Z}}/J \cap A_*^{\mathbf{Z}/n\mathbf{Z}}$. Let $\{\eta_1, \ldots, \eta_l\}$ be any $\mathfrak{C}(2)$ -invariant h.s.o.p. for B_* , $\dim(\eta_1) = \cdots = \dim(\eta_l) = S$. Since $\{\eta_1, \ldots, \eta_l\}$ is $\mathfrak{C}(2)$ -invariant,

$$\mathrm{Sq}^i(\eta_j) = \sum \lambda_{jk}^i \eta_k,$$

where $\lambda_{jk}^i \in B_i$. But for $i < \nu(n)$, $B_i = 0$, so $Sq^i(\eta_j) = 0$ for $i < \nu(n)$. Using the decomposability of Sq^i for i not a power of 2, this is equivalent to the requirement $Sq^{2^q}(\eta_i) = 0 \ \forall q \le t$. But, as is well known,

$$\operatorname{Sq}^{2^q}(x^m) = 0 \qquad \forall q \le t \Rightarrow 2^{t+1} | m.$$

Since a basis for B_m is given by x^m , for $m > \nu(n)$, if the η_j 's are to form an h.s.o.p., we must have $2^{t+1}|s$. Applying the second half of Lemma 1, we see that $\dim(\theta_1) = \cdots = \dim(\theta_k) = S$ is divisible by 2^{t+1} . \square

We interpret this geometrically.

THEOREM 5. Let $\Sigma(\mathbf{Z}/n\mathbf{Z}, \rho)$ act freely on $X \simeq \prod_{j=1}^k S^m$, X finite, and trivially on $H_*(X; k)$, where ρ is an irreducible, faithful representation of $\mathbf{Z}/n\mathbf{Z}$, n odd. Then (a) n|(m+1),

(b) $2^{t+1}|(m+1)$, where t satisfies $2^t < v(n) < 2^{t+1}$.

PROOF. By Proposition 1.5 and Theorem 1.7, the f_j 's $(f_j = d_{m+1}(z_j), z_j)$ the dual to the fundamental class of the jth sphere) form an $\mathcal{C}(2)$ -invariant h.s.o.p. for $H^*(\Sigma(\mathbf{Z}/n\mathbf{Z}, \rho); k)$ with $\dim(f_j) = m + 1$. Proposition 2 and Proposition 4 now imply the result. \square

EXAMPLE 6. Let $G = \sum (\mathbb{Z}/31, \rho)$, so $G = \mathbb{Z}/31 \times_{\rho} (\mathbb{Z}/2)^5$. G acts freely on $\prod_{j=1}^k S^m$, for some k, with trivial action on homology only if 8|(m+1), since $\nu(31) = 5$.

COROLLARY 7. Let G be any finite group acting freely on $\prod_{j=1}^k S^{2^{q-1}}$, with trivial action on $H_*(\prod_{j=1}^k S^{2^{q-1}}; k)$. Let $E \subseteq G$ be any elementary abelian 2-subgroup, and $\emptyset \subseteq N_G(E)$ an odd order subgroup. Then \emptyset acts trivially on E.

PROOF. Apply Theorem 5(a), noting that on $\prod_{j=1}^k S^{2^{q}-1}$, none of the groups $\Sigma(\mathbb{Z}/n\mathbb{Z};\rho)$ act freely, and if there were an $\emptyset \subseteq N_G(E)$ which acted nontrivially on E, some $\Sigma(\mathbb{Z}/n\mathbb{Z};\rho)$ would embed in G. \square

4. The groups A_4 and $\Sigma(\mathbf{Z}/7\mathbf{Z}; \rho)$. In this section, we will prove that the groups $A_4 = \Sigma(\mathbf{Z}/3\mathbf{Z}; \rho)$ and $\Sigma(\mathbf{Z}/7\mathbf{Z}; \rho)$ do not act freely on $\prod_{j=1}^k S^n$ for any values of k and n, where as usual ρ denotes an irreducible, faithful representation of the odd order cyclic group in question. Using the terminology of §2, we observe that $\nu(3) = 2$, and $\nu(7) = 3$. Consequently $H^1(A_4; k) = H^1(\Sigma(\mathbf{Z}/7\mathbf{Z}, \rho); k) = H^2(\Sigma(\mathbf{Z}/7\mathbf{Z}; \rho); k) = 0$. Let $A_* = \overline{k}[x_1, x_2]$ for A_* , and $A_* = \overline{k}[x_1, x_2, x_3]$ for $\Sigma(\mathbf{Z}/7\mathbf{Z}, \rho)$. Let $A_* = A_*^{\mathbf{Z}/3\mathbf{Z}}$ and $A_* = A_*^{\mathbf{Z}/3\mathbf{Z}}$ respectively.

PROPOSITION 1. Let $\{\theta_1, \ldots, \theta_t\}$ be a collection of homogeneous elements in $H^*(G; k)$, where $G = A_4$ or $\Sigma(\mathbb{Z}/7\mathbb{Z}, \rho)$, so that $\dim(\theta_1) = \cdots = \dim(\theta_t) = 2d$. Suppose the ideal $(\theta_1, \ldots, \theta_t)$ is $\mathcal{C}(2)$ -invariant. Then θ_i is a square in A_* for all i.

PROOF. By the above remarks, since $H^*(A_4;k) = 0$ for *=1, and $H^*(\Sigma(\mathbb{Z}/7\mathbb{Z}, \rho); k) = 0$ for *=1, 2, if $(\theta_1, \ldots, \theta_t)$ is $\mathscr{C}(2)$ -invariant, we must have $\operatorname{Sq}^1(\theta_i) = 0$ in the case of A_4 , and $\operatorname{Sq}^1(\theta_i) = \operatorname{Sq}^2(\theta_i) = 0$ in the case of $\Sigma(\mathbb{Z}/7\mathbb{Z}, \rho)$. Since $\dim(\theta_i) = 2d$, Q_0 vanishes on θ_i by Proposition 1.2(c). In the case of $\Sigma(\mathbb{Z}/7\mathbb{Z}, \rho)$, $Q_2 = [\operatorname{Sq}^1, \operatorname{Sq}^2]$ vanishes on θ_i as well. $H^*(A_4; k)$ is a subalgebra of $H^*(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, k)$, consequently Q_j may be expressed as a linear combination of Q_0 and Q_1 for all j. Hence $Q_j\theta_i = 0$ $\forall j$, which by Corollary 1.4 implies that θ_i is a square. Similarly, $[k(\zeta_7): k] = 3$, so on $H^*(\Sigma(\mathbb{Z}/7\mathbb{Z}, \rho))$, Q_j may be expressed as a linear combination of Q_0 , Q_1 , and Q_2 , implying $Q_j\theta_i = 0$ \forall_i , so θ_i is a square in A_* . \square

PROPOSITION 2. Let $\theta \in B_*$ be a homogeneous element in B_* , with $\theta = \eta^2$ for some $\eta \in A_*$. Then $\eta \in B_*$.

PROOF. The map $x \to x^2$ from A_S to A_{2S} is k-linear and an injection. Hence η is uniquely determined. If $\theta \in B_{2S}$, then θ is a sum $\sum a_{(e_1, \ldots, e_l)} x_1^{e_1} \cdots x_l^{e_l}$, where the l-tuples (e_1, \ldots, e_l) range over all solutions to the equation $\sum 2^{i-1} e_i \equiv 0 \pmod{n}$, and n = 3 or 7, l = 2 or 3. θ is a square in A_* if and only if each e_j is even, say $e_j = 2f_j$. Thus, $\eta = \sum \sqrt{a_{(e_1, \ldots, e_l)}} x_1^{f_1} \cdots x_l^{f_l}$. Now, $\sum 2^{i-1} f_i = \frac{1}{2} \sum 2^{i-1} e_i \equiv 0 \pmod{n}$, since n is odd. \square

Let A_*^2 and B_*^2 denote the subalgebras of squares in A_* and B_* . The above proposition shows that $A_*^2 \cap B_* = B_*^2$.

PROPOSITION 3. Let $\theta_1, \ldots, \theta_s \in B_*^2$, $\dim(\theta_1) = \cdots = \dim(\theta_s)$, and suppose that $\xi = \sum \lambda_i \theta_i$, where $\xi \in B_*^2$ is homogeneous, and the λ_i 's are homogeneous elements of A_* . Then there is an expression $\xi = \sum \lambda_i' \theta_i$, with λ_i' homogeneous, $\lambda_i' \in B_*^2$.

PROOF. We first point out that $A_* = \bar{k}[x_1, \ldots, x_l]$ is free as an A_*^2 -module, with basis consisting of all monomials $x_1^{d_1} \cdots x_l^{d_l}$, with $d_j = 0$ or 1. Given a monomial μ in the above basis, let π_{μ} denote the projection on the μ th factor in the A_*^2 module A_* . π_{μ} is A_*^2 -linear. If we have an expression $\xi = \sum \lambda_i \theta_i$, as in the theorem, we apply π_1 to the expression to obtain $\pi_1(\xi) = \sum \pi_1(\lambda_i)\theta_i$. Since ξ is a square, $\pi_1(\xi) = \xi$, and $\pi_1(\lambda_i) \in A_*^2$, so we may suppose that the λ_i 's are squares.

Let $\{\chi_i\}$ be a complete set of irreducible characters of $\mathbb{Z}/n\mathbb{Z}$ over \overline{k} . Let p_i denote the projection on the χ_i -isotypical component (see [6]). The p_i 's are B_* -linear, and moreover $p_i(A_*^2) \subseteq A_*^2$. If $\xi = \sum \lambda_i \theta_i$, with $\xi, \theta_1, \ldots, \theta_s \in B_*^2$, and $\lambda_i \in A_*^2$, by applying p_0 , if χ_0 is the trivial character, we obtain $p_0(\xi) = \sum p_0(\lambda_i)\theta_i$, and $p_0(\xi) = \xi$, since $\xi \in B_*$, so $\xi = \sum p_0(\lambda_i)\theta_i$. Setting $\lambda_i' = p_0(\lambda_i)$, we obtain the theorem, since $\lambda_i' \in A_*^2 \cap B_* = B_*^2$, by Proposition 2. \square

THEOREM 4. There does not exist a free G-action on $\prod_{i=1}^k S^n$, with trivial action on homology, for $G = A_A$ or $\Sigma(\mathbb{Z}/7\mathbb{Z}, \rho)$.

PROOF. According to Proposition 1.5 and Theorem 1.7, it suffices to prove that $H^*(G; k)$ admits no $\mathcal{C}(2)$ -invariant system of parameters $\{\theta_1, \ldots, \theta_s\}$ with dim (θ_1) $= \dim(\theta_2) = \cdots = \dim(\theta_s) = n + 1$. Proposition 1 and Proposition 2 guarantee that each θ_i is a square in B_* , say $\theta_i = \zeta_i$. We claim that the ideal $(\zeta_1, \ldots, \zeta_s)$ is $\mathcal{Q}(2)$ -invariant. Let $\operatorname{Sq}^{j}(\theta_{i}) = \sum \lambda_{ik}^{j} \theta_{k}$. Since the θ 's are squares, $\operatorname{Sq}^{2j}(\theta_{i}) = (\operatorname{Sq}^{j}(\zeta_{i}))^{2}$, and $\operatorname{Sq}^{2j+1}(\theta_i) = 0$. To obtain an expression for $\operatorname{Sq}^j(\zeta_i)$ in terms of ζ_1, \ldots, ζ_s , we write $(\operatorname{Sq}^{j}(\zeta_{i}))^{2} = \sum \lambda_{ik}^{2j} \theta_{k} = \sum \lambda_{ik}^{2j} \zeta_{k}^{2}$. But Proposition 3 gives that λ_{ik}^{2j} may be chosen to be a square, say $\lambda_{ik}^{2j} = (\mu_{ik}^{j})^{2}$, so $(\text{Sq}^{j}(\zeta_{i}))^{2} = \sum (\mu_{ik}^{j})^{2} \zeta_{k}^{2}$, or $\text{Sq}^{j}(\zeta_{i}) = \sum \mu_{ik}^{j} \zeta_{k}$, which was to be shown. Moreover, $\{\zeta_1, \ldots, \zeta_s\}$ is an h.s.o.p. for $H^*(G; k)$, since $\{\zeta_1^2,\ldots,\zeta_s^2\}=\{\theta_1,\ldots,\theta_s\}$ is. Consequently, if $\dim(\theta_1)=\cdots=\dim(\theta_s)=2^ml$, where l is odd, we have demonstrated the existence of an $\mathcal{C}(2)$ -invariant h.s.o.p. $\{\zeta_1,\ldots,\theta_s\}$, with $\dim(\theta_i)=2^{m-1}l$. Inductively, we may produce an h.s.o.p. $\{\theta_1, \ldots, \theta_s\}$ with $\dim(\theta_i) = l$, where l is odd. We claim, however, that this is impossible. Let J be as in Lemma 3.3. Then $B_*/J \cap B_*$ is a graded $\mathscr{Q}(2)$ -invariant subalgebra of k[x], and $B_*/J \cap B_* = 0$ for * = 1. Consequently, $B_*/J \cap B_*$ admits no $\mathcal{C}(2)$ -invariant h.s.o.p. in odd dimensions, for Sq^1 is nonzero on x^{2i+1} . By Lemma 3.1, B_{\star} admits no $\mathcal{Q}(2)$ -invariant h.s.o.p. in odd dimensions, which gives a contradiction.

REFERENCES

- 1. J. F. Adams and C. W. Wilkerson, Finite H-spaces and algebras over the Steenrod algebra, Ann. of Math. 111 (1980), 95-143.
- 2. G. Carlsson, On the non-existence of free actions of elementary abelian groups on products of spheres, Amer. J. Math. 102 (1980), 1147-1157.
 - 3. P. Conner, On the action of a finite group on $S^n \times S^n$, Ann. of Math. (2) 66 (1957), 586-588.
 - 4. J. Milnor, Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), 623-630.
- 5. R. Oliver, Proc. Aarhus Sympos. on Algebraic Topology, 1978, Lecture Notes in Math., vol. 763, Springer-Verlag, Berlin and New York.
- 6. R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475-511.
 - 7. E. Stein, Free actions on products of spheres, Michigan Math. J. (to appear).
 - 8. L. Dornhoff, Group representation theory, Dekker, New York, 1971-1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA-SAN DIEGO, LA JOLLA, CALIFORNIA 92093